Panel Información

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies.

¿Qué puedo hacer?

72838 materialEducativo

textoFiltroFicha

Interpretación geométrica de la derivada

tipo de documento Matemáticas - Secuencia didáctica

  • Me gusta 0
  • Visitas 15
  • Comentarios 0
  • Guardar en
  • Acciones

Acerca de este recurso...

Interpretación geométrica de la derivada

Ficha resumen

Descripción:

Una de las mayores dificultades que tiene el alumnado que comienzan a estudiar la derivada de una función es la comprensión de su significado geométrico. Mientras que el cálculo de derivadas les suele resultar sencillo e incluso atractivo, la aplicación de la interpretación geométrica de la derivada en un punto se convierte en un problema complejo, aunque no lo sea, debido a que en muchos casos no han conseguido adquirir el concepto con claridad. Las actividades que se plantean en estas páginas persiguen que el alumnado se familiarice con los conceptos de secante y tangente a una curva, observe cómo se produce la aproximación y entienda el límite como un proceso que se puede ver y comprobar.

Orientación didáctica:

TIPO DE CONOCIMIENTO: procedimental

CONOCIMIENTO PREVIO:Estos contenidos se tratarán en el curso posterior al actual.

OBJETIVOS DIDÁCTICOS:Identificar el problema del trazado de la tangente a una curva en un punto Identificar la tangente como límite de las secantes. Determinar la pendiente de la tangente como límite de las pendientes de las secantes. Obtener geométricamnente la derivada de una función en un punto. Determinar la ecuación de la recta tangente a una curva en un punto por medio de la derivada.

Licencia:
creative commons: reconocimiento - no comercial - compartir igual
Descripción licencia:

La utilización de estos contenidos es universal, gratuita y abierta, siempre y cuando se trate de un uso educativo no comercial. Las acciones, productos y utilidades derivadas de su utilización no podrán, en consecuencia, generar ningún tipo de lucro. Asímismo, es obligada la referencia de la fuente.

Destinatario:
alumno
Contexto:
compañero

General

Idioma:
castellano
Palabras clave: función tangente derivada
Ambito: universal
Estructura:
lineal
Nivel de agregación:
Secuencia Didáctica
Colección: Descartes
Nodo:
URL repositorio: /repositorio/21022010/3f/es_2010022113_9211140
IMS Manifest Descargar fichero

Técnica

Formato:
image/gif
text/html
Tipo requerimiento:
sistema operativo
Nombre requerimiento:
multi-os
Tipo requerimiento:
navegador
Nombre requerimiento:
cualquiera
Consideraciones instalación:

No requiere instalación.

Otros requisitos plataforma:

Instalar y activar en local interprete de Java y el Plugin del applet Descartes.

Uso Educativo

Tipo recurso educativo:
escenario real o virtual de aprendizaje
Tipo interacción:
combinado
Nivel interacción:
medio
Densidad semántica:
baja
Edad: 16
Dificultad:
medio
Tiempo aprendizaje: Dos sesiones lectivas.
Idioma educativo:
castellano
Proceso cognitivo:
analizar
relacionar
representar
comprender

Derechos

Coste licencia:
no
Tipo acceso:
universal
Descripción acceso:

es_cnice_20080623,es_{nodo}_20080923,es_clm_20091103121523455,es_murcia_20080422121523455,es_valencia_20081215,es_contenidos_20080623,es_canarias_20090114,es_aragon_20080930,es_larioja_20081107,es_cantabria_20081215,es_extremadura_20090126,es_navarra_20090202,es_castillayleon_20080422121523455,es_andalucia_20090324

Fecha publicación: 28.3.2015

Comentar

0

¿Quieres comentar? Regístrate o inicia sesión

Únete a Didactalia

Navega entre 72838 recursos y 240737 usuarios

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Regístrate Acceso usuarios
Añadir a Didactalia
ayudaDelJuego
Mapas

CARGANDO...

Ir a Mapas
Un museo virtual con más de 17.000 obras de arte

CARGANDO...

Ir a Mis Museos
Biblioteca

CARGANDO...

Ir a BNEscolar
EduBlogs

CARGANDO...

Ir a Edublogs
Odite

CARGANDO...

Ir a Odite
Con la tecnología GNOSS