224340 materialEducativo

textoFiltroFicha

Teorema de Rouché-Frobenius (aplicación)

tipo de documento Matematiques - Tutorial

  • J’aime 2
  • Visites 1072
  • Commentaires 0
  • Enregistrer dans
  • Actions

À propos de cette ressource...

Recordad que un sistema de ecuaciones lineales (SEL) puede representarse de forma matricial como A·X = b, donde A es la matriz de coeficientes, X es la matriz columna de incógnitas y b es la matriz columna de términos independientes. Recordad que el SEL es 

  • compatible determinado: si tiene solución y es única. 
  • compatible indeterminado: si tiene solución no única. En este caso, existen infinitas soluciones.
  • incompatible: si no tiene solución.

El teorema de Rouché-Frobenius establece la relación entre el rango de la matriz ampliada (A|b) del sistema A·x = b y el tipo de sistema. 

El teorema dice: 

"Sea el sistema A·X=b  con m ecuaciones lineales y con n incógnitas, donde m y n son naturales mayores que 0. Entonces,

  • El sistema AX = b es compatible si, y sólo si, rango(A) = rango(A|b)

  • El sistema AX = b es compatible determinado si, y sólo si, rango(A) = rango(A|b)= n"

Ejemplo de aplicación: 

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

 

La matriz ampliada del sistema es:

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

 

El rango de la matriz es

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

ya que tiene un determinante de dimensión 3 no nulo:

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

 

Además, como el determinante anterior también es el determinante de la matriz A, la matriz de coeficientes también tiene rango 3:

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

Por tanto, tenemos que los rangos de las dos matrices coinciden

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

y, por el teorema de Rouché-Frobenius, como el rango es igual al número de incógnitas, el sistema es compatible determinado.

En efecto, la única solución del sistema es, en forma matricial,

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

 

Es decir,

 

ejemplos de aplicación del teorema de Rouché-Frobenius

 

 

 

 

Nota: la solución se ha calculado por la regla de Cramer.

Más ejemplos: Teorema de Rouché-Frobenius

Otros temas relacionados:

Carte conceptuelle: Teorema de Rouché-Frobenius (aplicación)

Contenu exclusif pour les membres de

D/i/d/a/c/t/a/l/i/a
Connecter

Mira un ejemplo de lo que te pierdes

Fecha publicación: 16.4.2018

La licence originale de la ressource est respectée.

Commenter

0

Que se passe t’il ? Inscrivez-vous ou lancer session

Rejoignez Didactalia

Parcourez parmi 224340 ressources et 566060 personnes

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Voulez-vous accéder à plus de contenu éducatif?

Lancer session Rejoignez un cours
x

Ajouter à Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Aide du jeu
Juegos de anatomía
Selecciona nivel educativo