Que puis-je faire ?
226523 materialEducativo
textoFiltroFichatipo de documento Matematiques - Tutorial
À propos de cette ressource...
When the integrand is formed by a product (or a division, which we can treat like a product) it's recommended the use of the method known as integration by u-substitution, that consists in applying the following formula:
Even though it's a simple formula, it has to be applied correctly. Let's see a few tips on how to apply it well:
Example 1
Notes: it doesn't matter if cos(x) in u or dv (due to the fact we obtain a sinus). We choose u = x to reduce it's degree (and that way x disappears). If we choose dv = x, we increase the degree.
Example 2
In this integral we don't have an explicit product of functions, but we don't know what the logarithms primitive function is, so we differentiate it, that way u = ln(x).
Example 3
It's in our interest to select u = x2 (to reduce the exponent) but then we're forced that dv = ln(x) and obtaining v isn't immediate. So we'll select the other case
More examples: Integration by U-substitution: resolved integrals step by step
Matesfacil.com by J. Llopis is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Contenu exclusif pour les membres de
Mira un ejemplo de lo que te pierdes
Autores:
Catégories:
Étiquettes:
Fecha publicación: 6.2.2017
Contenu sous licence de Creative Commons Attribution 3.0 License.
Que se passe t’il ? Inscrivez-vous ou lancer session
Si ya eres usuario, Inicia sesión
Ajouter à Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...
Commenter
0