Panel Information

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies (actualizada el 25-01-2017).

What can I do?

95411 materialEducativo

textoFiltroFicha

Números complejos o imaginarios

tipo de documento Mathematics - Tutorial

  • I like 0
  • Visits 116
  • Comments 1
  • Save to
  • Acciones

About this resource...

Un número complejo, z, es una suma de dos números:

Números complejos o imaginarios

 

donde a es la parte real y b la parte imaginaria.

El conjunto de los números complejos contiene al de los reales:

Números complejos o imaginarios

 

Notemos que el cuadrado de i es un real negativo:

Números complejos o imaginarios

 

 

La suma de complejos es

Números complejos o imaginarios

 

 

El conjugado del complejo a+bi es a-bi. 

El módulo del complejo a+bi es

Números complejos o imaginarios

 

Producto y cociente

El producto es

 

Números complejos o imaginarios

 

 

El cociente es

 

Números complejos o imaginarios

 

 

Algunas propiedades

Seal los complejos z = a+bi, w = c+di y w =e+fi

1. Conjugado del conjugado:

demostraciones de las propiedades de los números complejos

 

 

2. Conjugado de la suma:

demostraciones de las propiedades de los números complejos

 

 

3. Producto por su conjugado:

demostraciones de las propiedades de los números complejos

 

4. Conjugado del producto:

demostraciones de las propiedades de los números complejos

 

5.  Conjugado del cociente:

demostraciones de las propiedades de los números complejos

 

 

6. Módulo de un complejo:

demostraciones de las propiedades de los números complejos

 

7. Módulo del conjugado:

demostraciones de las propiedades de los números complejos

 

8. Módulo del producto:

demostraciones de las propiedades de los números complejos

 

9. Módulo del inverso:

demostraciones de las propiedades de los números complejos

 

10. Módulo del cociente:

demostraciones de las propiedades de los números complejos

 

 

11. Desigualdad triangular (versión complejos):

demostraciones de las propiedades de los números complejos

 

Raíces n-ésimas

Las raíces n-ésimas de un complejo z = a + bi son 

 

raíces n-esimas de complejos

 

 

siendo

raíces n-esimas de complejos

 

 

|z| el módulo de z.

 

Aplicando la fórmula de Euler, las raíces son

raíces n-esimas de complejos

 

 

Las raíces n-ésimas de los complejos forman polígonos regulares de n lados. 

Por ejemplo, las raíces 5-ésimas del complejo z = 0 + i son 

 

raíces n-esimas de complejos

 

 

 

 

 

 

 

 

 

Fecha publicación: 11.2.2018

The original license is kept.

Comment

1

Do you want to comment? Sign up or Sign in

Únete a Didactalia

Browse among 95411 resources and 366918 people

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Sign up Acceso usuarios
Add to Didactalia
ayudaDelJuego
Juegos de anatomía
Selecciona nivel educativo
    Mapas

    CARGANDO...

    Ir a Mapas
    CienciasNaturales

    CARGANDO...

    Ir a juegos de ciencias
    Un museo virtual con más de 17.000 obras de arte

    CARGANDO...

    Ir a Mis Museos
    Biblioteca

    CARGANDO...

    Ir a BNEscolar
    EduBlogs

    CARGANDO...

    Ir a Edublogs
    Odite

    CARGANDO...

    Ir a Odite
    Powered by GNOSS

    AVISO DE PRIVACIDAD

    En DIDACTALIA tu privacidad es lo más importante para nosotros. Hemos modificado nuestra política de privacidad.

    Para poder seguir utilizando nuestros servicios debes leer y aceptar nuestra política.