Panel Information

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies (actualizada el 25-01-2017).

What can I do?

95125 materialEducativo

textoFiltroFicha

Números complejos o imaginarios

tipo de documento Mathematics - Tutorial

  • I like 0
  • Visits 80
  • Comments 1
  • Save to
  • Acciones

About this resource...

Un número complejo, z, es una suma de dos números:

Números complejos o imaginarios

 

donde a es la parte real y b la parte imaginaria.

El conjunto de los números complejos contiene al de los reales:

Números complejos o imaginarios

 

Notemos que el cuadrado de i es un real negativo:

Números complejos o imaginarios

 

 

La suma de complejos es

Números complejos o imaginarios

 

 

El conjugado del complejo a+bi es a-bi. 

El módulo del complejo a+bi es

Números complejos o imaginarios

 

Producto y cociente

El producto es

 

Números complejos o imaginarios

 

 

El cociente es

 

Números complejos o imaginarios

 

 

Algunas propiedades

Seal los complejos z = a+bi, w = c+di y w =e+fi

1. Conjugado del conjugado:

demostraciones de las propiedades de los números complejos

 

 

2. Conjugado de la suma:

demostraciones de las propiedades de los números complejos

 

 

3. Producto por su conjugado:

demostraciones de las propiedades de los números complejos

 

4. Conjugado del producto:

demostraciones de las propiedades de los números complejos

 

5.  Conjugado del cociente:

demostraciones de las propiedades de los números complejos

 

 

6. Módulo de un complejo:

demostraciones de las propiedades de los números complejos

 

7. Módulo del conjugado:

demostraciones de las propiedades de los números complejos

 

8. Módulo del producto:

demostraciones de las propiedades de los números complejos

 

9. Módulo del inverso:

demostraciones de las propiedades de los números complejos

 

10. Módulo del cociente:

demostraciones de las propiedades de los números complejos

 

 

11. Desigualdad triangular (versión complejos):

demostraciones de las propiedades de los números complejos

 

Raíces n-ésimas

Las raíces n-ésimas de un complejo z = a + bi son 

 

raíces n-esimas de complejos

 

 

siendo

raíces n-esimas de complejos

 

 

|z| el módulo de z.

 

Aplicando la fórmula de Euler, las raíces son

raíces n-esimas de complejos

 

 

Las raíces n-ésimas de los complejos forman polígonos regulares de n lados. 

Por ejemplo, las raíces 5-ésimas del complejo z = 0 + i son 

 

raíces n-esimas de complejos

 

 

 

 

 

 

 

 

 

Fecha publicación: 11.2.2018

The original license is kept.

Comment

1

Do you want to comment? Sign up or Sign in

Únete a Didactalia

DATOS_COMUNIDAD_REGISTRO_RECURSO

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Sign up Acceso usuarios
Añadir a Didactalia
ayudaDelJuego
JuegosDeAnatomia
SeleccionaNivelEducativo
    Mapas

    CARGANDO...

    Ir a Mapas
    CienciasNaturales

    CARGANDO...

    Ir a juegos de ciencias
    Un museo virtual con más de 17.000 obras de arte

    CARGANDO...

    Ir a Mis Museos
    Biblioteca

    CARGANDO...

    Ir a BNEscolar
    EduBlogs

    CARGANDO...

    Ir a Edublogs
    Odite

    CARGANDO...

    Ir a Odite
    Con la tecnología GNOSS