What can I do?

buscador
Discover
Carrito Total 0 0

226539 materialEducativo

textoFiltroFicha
  • I like 0
  • Visits 84
  • Comments 0
  • Save to
  • Actions

About this resource...

Non-Euclidean geometry
Dbpedia
Wikipedia articleDbpedia source
In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is replaced with an alternative one. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the which give rise to that have also been called non-Euclidean geometry. The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line ℓ and a point A, which is not on ℓ, there is exactly one line through A that does not intersect ℓ. In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting ℓ, while in elliptic geometry, any line through A intersects ℓ. Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line: </br>* In Euclidean geometry the lines remain at a constant distance from each other (meaning that a line drawn perpendicular to one line at any point will intersect the other line and the length of the line segment joining the points of intersection remains constant) and are known as parallels. </br>* In hyperbolic geometry they "curve away" from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels. </br>* In elliptic geometry the lines "curve toward" each other and intersect.
Geometría no euclidiana

Conceptual map: Geometría no euclidiana

Exclusive content for members of

D/i/d/a/c/t/a/l/i/a
Sign in

Mira un ejemplo de lo que te pierdes

Categories:

Tags:

Fecha publicación: 14.2.2018

Comment

0

Do you want to comment? Sign up or Sign in

Join Didactalia

Browse among 226539 resources and 574244 people

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Do you want to access more educational content?

Sign in Join a class
x

Add to Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Game help
Juegos de anatomía
Selecciona nivel educativo