Panel Información

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies.

¿Qué puedo hacer?

94395 materialEducativo

textoFiltroFicha
  • Me gusta 0
  • Reproducciones 466
  • Comentarios 0
  • Guardar en
  • Acciones

Acerca de este recurso...

Izar Alonso (IES Diego Velázquez de Torrelodones) y Paula Sardinero (Colegio Virgen de Europa de Boadilla del Monte), estudiantes de 4º de ESO que participan en el Proyecto ESTALMAT, presentan el octavo desafío matemático de EL PAÍS con el que se celebra el centenario de la Real Sociedad Matemática Española

El enunciado es el siguiente:

 

A cada uno de los vértices de un cubo le asignamos un 1, o un -1. Después asignamos a cada una de las caras el producto de los números de sus vértices.

¿Puede hacerse la asignación inicial de manera que la suma de los 14 números (8 de los vértices y 6 de las caras) sea 0? Encontrar tal asignación o demostrar que no existe. 

Aquí os dejamos la solución al desafío.

 

Para obtener más recursos educativos consulta el índice y el buscador facetado de Didactalia.

Fecha publicación: 29.5.2012

Se respeta la licencia original del recurso.

Comentar

0

¿Quieres comentar? Regístrate o inicia sesión

Únete a Didactalia

Navega entre 94395 recursos y 240654 usuarios

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Regístrate Acceso usuarios
Añadir a Didactalia
ayudaDelJuego
Mapas

CARGANDO...

Ir a Mapas
Un museo virtual con más de 17.000 obras de arte

CARGANDO...

Ir a Mis Museos
Biblioteca

CARGANDO...

Ir a BNEscolar
EduBlogs

CARGANDO...

Ir a Edublogs
Odite

CARGANDO...

Ir a Odite
Con la tecnología GNOSS