¿Qué puedo hacer?

101098 materialEducativo

textoFiltroFicha
  • Me gusta 0
  • Reproducciones 323
  • Comentarios 0
  • Guardar en
  • Acciones

Acerca de este recurso...

"In order for a function to have continuity at a certain point, several conditions including (1) the existence of the point in the domain and (2) the existence of a two-sided limit as the point approaches the limit must be met. If functions are continuous at every point in their domain, they we call these functions continuous functions. Examples of continuous functions are power functions, exponential functions and logarithmic functions." Fuente: BrightStorm

Continuous Functions es un video-tutorial (en inglés) de ©Brightstorm , en su portal disponen de muchos otros vídeos gratuitos de ciencias (Matemáticas, Biología, Química y Física).

Para obtener más recursos educativos y materiales didácticos consulta la base de recursos de la comunidad Didactalia: materiales didácticos.

Mapa Conceptual: Continuous Functions

Contenido exclusivo para miembros de

D/i/d/a/c/t/a/l/i/a
Iniciar sesión

Mira un ejemplo de lo que te pierdes

Autores:

Fecha publicación: 30.8.2011

Se respeta la licencia original del recurso.

Comentar

0

¿Quieres comentar? Regístrate o inicia sesión

Únete a Didactalia

Navega entre 101098 recursos y 506341 usuarios

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Iniciar sesión Únete a una clase
x

Añadir a Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Ayuda del juego
Juegos de anatomía
Selecciona nivel educativo
    Mapas

    CARGANDO...

    Ir a Mapas
    CienciasNaturales

    CARGANDO...

    Ir a juegos de ciencias
    Un museo virtual con más de 17.000 obras de arte

    CARGANDO...

    Ir a Mis Museos
    Biblioteca

    CARGANDO...

    Ir a BNEscolar
    EduBlogs

    CARGANDO...

    Ir a Edublogs
    Odite

    CARGANDO...

    Ir a Odite
    Con la tecnología GNOSS