226350 materialEducativo

textoFiltroFicha
  • Gústame 0
  • Visitas 6
  • Comentarios 0
  • Gardar en
  • Accións

Sobre este recurso...

DbpediaThing
Artículo WikipediaFuente Dbpedia
Newton–Wigner localization (named after Theodore Duddell Newton and Eugene Wigner) is a scheme for obtaining a position operator for massive relativistic quantum particles. It is known to largely conflict with the Reeh-Schlieder theorem outside of a very limited scope. The Newton–Wigner position operators x1, x2, x3, are the premier notion of positionin relativistic quantum mechanics of a single particle. They enjoy the same commutation relations with the 3 space momentum operators and transform underrotations in the same way as the x, y, z in ordinary QM. Though formally they have the same properties with respect top1, p2, p3, asthe position in ordinary QM, they have additional properties. One of these is thatThis ensures that the free particle moves at the expected velocity with the given momentum/energy. Apparently these notions were discovered when attempting to define a self adjoint operator in the relativistic setting that resembled the position operator in basic Quantum mechanics in the sense that at low momenta it approximately agreed with that operator. It also has several famous strange behaviors, one ofwhich is seen as the motivation for having to introduce quantum field theory.

Mapa conceptual: Newton–Wigner localization

Contido exclusivo para membros de

D/i/d/a/c/t/a/l/i/a
Iniciar sesión

Mira un ejemplo de lo que te pierdes

Categorías:

Fecha publicación: 20.4.2015

Comentar

0

Queres comentar? Rexístrate ou inicia sesión

Úneche a Didactalia

Navega entre 226350 recursos e 565297 persoas

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Queres acceder a máis contidos educativos?

Iniciar sesión Únete a unha clase
x

Engadir a Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Axuda do xogo
Juegos de anatomía
Selecciona nivel educativo