224319 materialEducativo

textoFiltroFicha
  • Gústame 0
  • Visitas 1
  • Comentarios 0
  • Gardar en
  • Accións

Sobre este recurso...

Implicit surface
Dbpedia
Artículo WikipediaFuente Dbpedia
In mathematics, an implicit surface is a surface in Euclidean space defined by an equation An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z. The graph of a function is usually described by an equation and is called an explicit representation. The third essential description of a surface is the parametric one: , where the x-, y- and z-coordinates of surface points are represented by three functions depending on common parameters . Generally the change of representations is simple only when the explicit representation is given: (implicit), (parametric). Examples: 1. <br />* The plane 2. <br />* The sphere 3. <br />* The torus 4. <br />* A surface of genus 2: (see diagram). 5. <br />* The surface of revolution (see diagram wineglass). For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example. The implicit function theorem describes conditions under which an equation can be solved (at least implicitly) for x, y or z. But in general the solution may not be made explicit. This theorem is the key to the computation of essential geometric features of a surface: tangent planes, surface normals, curvatures (see below). But they have an essential drawback: their visualization is difficult. If is polynomial in x, y and z, the surface is called algebraic. Example 5 is non-algebraic. Despite difficulty of visualization, implicit surfaces provide relatively simple techniques to generate theoretically (e.g. Steiner surface) and practically (see below) interesting surfaces.

Mapa conceptual: Implicit surface

Contido exclusivo para membros de

D/i/d/a/c/t/a/l/i/a
Iniciar sesión

Mira un ejemplo de lo que te pierdes

Categorías:

Etiquetas:

Fecha publicación: 14.1.2023

Comentar

0

Queres comentar? Rexístrate ou inicia sesión

Úneche a Didactalia

Navega entre 224319 recursos e 565028 persoas

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Queres acceder a máis contidos educativos?

Iniciar sesión Únete a unha clase
x

Engadir a Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Axuda do xogo
Juegos de anatomía
Selecciona nivel educativo