226379 materialEducativo

textoFiltroFicha
  • Gústame 0
  • Visitas 7
  • Comentarios 0
  • Gardar en
  • Accións

Sobre este recurso...

Función algebraica
DbpediaThing
Artículo WikipediaFuente Dbpedia
In mathematics, an algebraic function is a function that can be defined as the root of a polynomial equation. Quite often algebraic functions can be expressed using a finite number of terms, involving only the algebraic operations addition, subtraction, multiplication, division, and raising to a fractional power: are typical examples. However, some algebraic functions cannot be expressed by such finite expressions (as proven by Galois and Niels Abel), as it is for example the case of the function defined by .In more precise terms, an algebraic function of degree n in one variable x is a function that satisfies a polynomial equation where the coefficients ai(x) are polynomial functions of x, with coefficients belonging to a set S.Quite often, , and one then talks about "function algebraic over ", andthe evaluation at a given rational value of such an algebraic function gives an algebraic number.A function which is not algebraic is called a transcendental function, as it is for example the case of . A composition of transcendental functions can give an algebraic function: .As an equation of degree n has n roots, a polynomial equation does not implicitly define a single function, but nfunctions, sometimes also called branches. Consider for example the equation of the unit circle:This determines y, except only up to an overall sign; accordingly, it has two branches:An algebraic function in m variables is similarly defined as a function y which solves a polynomial equation in m + 1 variables:It is normally assumed that p should be an irreducible polynomial. The existence of an algebraic function is then guaranteed by the implicit function theorem.Formally, an algebraic function in m variables over the field K is an element of the algebraic closure of the field of rational functions K(x1,...,xm).

Mapa conceptual: Función algebraica

Contido exclusivo para membros de

D/i/d/a/c/t/a/l/i/a
Iniciar sesión

Mira un ejemplo de lo que te pierdes

Categorías:

Fecha publicación: 20.4.2015

Comentar

0

Queres comentar? Rexístrate ou inicia sesión

Úneche a Didactalia

Navega entre 226379 recursos e 566624 persoas

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Queres acceder a máis contidos educativos?

Iniciar sesión Únete a unha clase
x

Engadir a Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Axuda do xogo
Juegos de anatomía
Selecciona nivel educativo