226349 materialEducativo

textoFiltroFicha
  • Gustatzen zait 0
  • Bisitak 2
  • Oharrak 0
  • Hemen gorde:
  • Ekintzak

Baliabide honi buruz...

Greedy algorithm for Egyptian fractions
Softwarea
Artículo WikipediaFuente Dbpedia
In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions is described in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction. Fibonacci actually lists several different methods for constructing Egyptian fraction representations . He includes the greedy method as a last resort for situations when several simpler methods fail; see Egyptian fraction for a more detailed listing of these methods. As Salzer (1948) details, the greedy method, and extensions of it for the approximation of irrational numbers, have been rediscovered several times by modern mathematicians, earliest and most notably by J. J. Sylvester; see for instance and . A closely related expansion method that produces closer approximations at each step by allowing some unit fractions in the sum to be negative dates back to . The expansion produced by this method for a number x is called the greedy Egyptian expansion, Sylvester expansion, or Fibonacci–Sylvester expansion of x. However, the term Fibonacci expansion usually refers, not to this method, but to representation of integers as sums of Fibonacci numbers.

Mapa kontzeptuala: Greedy algorithm for Egyptian fractions

Kide hauentzat bakarrik:

D/i/d/a/c/t/a/l/i/a
Saioa hasteko

Mira un ejemplo de lo que te pierdes

Kategoriak:

Etiketak:

Fecha publicación: 6.9.2022

Aipatu

0

Aipatu nahi al duzu? Erregistratu o Hasi saioa

Zatoz Didactaliara

Navega entre 226349 recursos y 565025 personas

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Hezkuntza-eduki gehiago eskuratu nahi dituzu?

Saioa hasi Egin bat eskola batekin
x

Didactalia-ri Gehitzea Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Jokoaren laguntza
Juegos de anatomía
Selecciona nivel educativo