What can I do?

buscador
Discover
Carrito Total 0 0
  • I like 1
  • Visits 3442
  • Comments 0
  • Save to
  • Actions

tipo de documento Lessons

Solo miembros / Only members

Accede y participa ...

Curriculum information

Level: 13-14 años Subject: Matemáticas
Cancel SAVE

Introducción a la lección

En esta lección se ampliarán conocimientos de los siguientes contenidos:

Cálculos con porcentajes

Para obtener un tanto por ciento de un número simplemente se multiplica x2. Una forma equivalente de tratar esta operación es considerar que se multiplica por la cifra y se divide por cien (pues 0,01 = 1/100).

25\cdot 0,01\cdot 150=37,5

Proporcionalidad directa

Dadas dos variables X e Y, Y es (directamente) proporcional a X (X e Y varían directamente, o X e Y están en variación directa) si hay una constante distinta de cero tal que: y = kx

Proporcionalidad inversa

El concepto de proporcionalidad inversa puede ser contrastado contra la proporcionalidad directa. Considere dos variables que se dice son "inversamente proporcionales" entre sí. Si todas las otras variables se mantienen constantes, la magnitud o el valor absoluto de una variable de proporcionalidad inversa disminuirá proporcionalmente si la otra variable aumenta, mientras que su producto se mantendrá (la constante de proporcionalidad k) siempre igual.

Constante de proporcionalidad

La constante, o factor de proporcionalidad, puede ser encontrada multiplicando la variable "x" original y la variable "y" original.

Referencias

Terminología:

Protagonistas: 

Créditos: la información previa ha sido extraída de los siguientes artículos de wikipedia

Introducción a la lección

En esta lección se ampliarán conocimientos de los siguientes contenidos:

Cálculos con porcentajes

Para obtener un tanto por ciento de un número simplemente se multiplica x2. Una forma equivalente de tratar esta operación es considerar que se multiplica por la cifra y se divide por cien (pues 0,01 = 1/100).

25\cdot 0,01\cdot 150=37,5

Proporcionalidad directa

Dadas dos variables X e Y, Y es (directamente) proporcional a X (X e Y varían directamente, o X e Y están en variación directa) si hay una constante distinta de cero tal que: y = kx

Proporcionalidad inversa

El concepto de proporcionalidad inversa puede ser contrastado contra la proporcionalidad directa. Considere dos variables que se dice son "inversamente proporcionales" entre sí. Si todas las otras variables se mantienen constantes, la magnitud o el valor absoluto de una variable de proporcionalidad inversa disminuirá proporcionalmente si la otra variable aumenta, mientras que su producto se mantendrá (la constante de proporcionalidad k) siempre igual.

Constante de proporcionalidad

La constante, o factor de proporcionalidad, puede ser encontrada multiplicando la variable "x" original y la variable "y" original.

Referencias

Terminología:

Protagonistas:

Créditos: la información previa ha sido extraída de los siguientes artículos de wikipedia

Didactic units

Proporcionalidad 2º ESO (Cidead)

Proporcionalidad (Vitutor)

Proporcionalidad (Descartes)

To practice

Ejercicios de proporcionalidad resueltos

Variación proporcional y gráficas

Razón y proporción

Solo miembros / Only members

Accede y participa ...

Conceptual map: Proporcionalidad y porcentajes

Exclusive content for members of

D/i/d/a/c/t/a/l/i/a
Sign in

Mira un ejemplo de lo que te pierdes

Comment

0

Do you want to comment? Sign up or Sign in

Do you want to access more educational content?

Sign in Join a class
x

Add to Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Game help
Juegos de anatomía
Selecciona nivel educativo