What can I do?

226344 materialEducativo

textoFiltroFicha
  • I like 1
  • Visits 469
  • Comments 0
  • Save to
  • Actions

About this resource...

La máquina de Turing, presentada por Alan Turing en 1936 en On computable numbers, with an application to the Entscheidungsproblems, es el modelo matemático de un dispositivo que se comporta como un autómata finito y que dispone de una cinta de longitud infinita en la que se pueden leer, escribir o borrar símbolos. Existen otras versiones con varias cintas, deterministas o no, etc., pero todas son equivalentes (respecto a los lenguajes que aceptan).

Uno de los teoremas más importantes sobre las máquinas de Turing es que pueden simular el comportamiento de una computadora (almacenamiento y unidad de control). Por ello, si un problema no puede ser resuelto por una de estas máquinas, entonces tampoco puede ser resuelto por una computadora (problema indecidible, NP).

La notación de las máquinas de Turing es sencilla y exacta, por lo que es más cómodo trabajar con ellas a la hora de estudiar qué problemas son decidibles (P) y cuáles indecidibles (NP).

En esta página veremos la definición de la Máquina de Turing, algunos ejemplos, su lenguaje y algunos teoremas que la relacionan con los Autómatas Finitos.

Conceptual map: Máquina de Turing (definición y lenguaje)

Exclusive content for members of

D/i/d/a/c/t/a/l/i/a
Sign in

Mira un ejemplo de lo que te pierdes

Fecha publicación: 15.4.2018

The original license is kept.

Comment

0

Do you want to comment? Sign up or Sign in

Join Didactalia

Browse among 226344 resources and 564634 people

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Do you want to access more educational content?

Sign in Join a class
x

Add to Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Game help
Juegos de anatomía
Selecciona nivel educativo