Panel Information

Utilizamos cookies propias y de terceros para mejorar tu experiencia de navegación. Al continuar con la navegación entendemos que aceptas nuestra política de cookies (actualizada el 20-05-2019).

What can I do?

96334 materialEducativo

textoFiltroFicha

Corona Circular: área, perímetro y problemas

tipo de documento Mathematics - Tutorial

  • I like 1
  • Visits 879
  • Comments 0
  • Save to
  • Acciones

About this resource...

En esta página definimos corona circular y proporcionamos las fórmulas para calcular su área y su perímetro.

Definición

Una corona circular es la figura geométrica delimitada por dos circunferencias con el mismo centro (concéntricas) y radios distintos (R>r):

Corona Circular: área, perímetro y problemas

 

 

 

 

 

 

 

En la representación, R es el radio de la circunferencia exterior y r es el radio de la circunferencia interior.

 

Fórmulas

 

Las fórmulas del área y del perímetro de una corona circular se obtienen a partir de las fórmulas de la circunferencia. Recordamos que el área delimitada por una circunferencia de radio R es πR^2 y su perímetro es 2πR.

Si R es el radio mayor (circunferencia exterior) y r el radio menor (circunferencia interior) de una corona circular, entonces:

 

El área de la corona circular es

Corona Circular: área, perímetro y problemas

 

 

El perímetro de la corona circular es

Corona Circular: área, perímetro y problemas

 

 

Ejemplo (Problema 1)

Calcular el área y el perímetro de una corona circular delimitada por dos circunferencias con radios 2 y 4 metros.

Solución:

El radio de la circunferencia exterior es R=4m y el radio de la circunferencia interior es r=2m. Por tanto, el área de la corona circular es

Corona Circular: área, perímetro y problemas

 

 

 

 

 

Y el perímetro es

Corona Circular: área, perímetro y problemas

 

 

 

 

 

Problemas propuestos

 

Problema 2

Corona Circular: área, perímetro y problemas

 

 

 

 

 

Una piscina con forma circular y perímetro 30π metros tiene una isla circular con un radio de 2 metros. Calcular la superficie de agua de la piscina.

 

Problema 3

Explicar por qué el área de una corona circular es A=π⋅(R^2−r^2) y su perímetro es P=2⋅π⋅(R+r).

 

Problema 4

Escribir la ecuación de una corona circular delimitada por las circunferencias con centro en el origen y radios 1 y 3.

 

Problema 5

Corona Circular: área, perímetro y problemas

 

 

 

 

 

 

 

Una corona esférica es la región del espacio comprendida entre dos esferas concéntricas. ¿Cuál es su volumen?

 

Las soluciones a los problemas propuestos están en la página Corona circular: área, perímetro y problemas resueltos.

Recursos

Otros recursos:

Mapa Conceptual

Contenido exclusivo para suscriptores de

D/i/d/a/c/t/a/l/i/a m/á/s
Subscribe

Mira un ejemplo de lo que te pierdes

Fecha publicación: 15.7.2018

The original license is kept.

Comment

0

Do you want to comment? Sign up or Sign in

Únete a Didactalia

Browse among 96334 resources and 426537 people

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

¿Quieres acceder a más contenidos educativos?

Sign up Acceso usuarios
Add to Didactalia
Ayuda juegos
Juegos de anatomía
Selecciona nivel educativo
    Mapas

    CARGANDO...

    Ir a Mapas
    CienciasNaturales

    CARGANDO...

    Ir a juegos de ciencias
    Un museo virtual con más de 17.000 obras de arte

    CARGANDO...

    Ir a Mis Museos
    Biblioteca

    CARGANDO...

    Ir a BNEscolar
    EduBlogs

    CARGANDO...

    Ir a Edublogs
    Odite

    CARGANDO...

    Ir a Odite
    Powered by GNOSS