226344 materialEducativo

textoFiltroFicha
  • M'agrada 0
  • Visites 5
  • Comentaris 0
  • Desar a
  • Accions

Sobre aquest recurs...

DbpediaThing
Artículo WikipediaFuente Dbpedia
In mathematics, a self-adjoint operator on a complex vector space V with inner product is an operator (a linear map A from V to itself) that is its own adjoint: . If V is finite-dimensional with a given basis, this is equivalent to the condition that the matrix of A is Hermitian, i.e., equal to its conjugate transpose A*. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. In this article, we consider generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.Self-adjoint operators are used in functional analysis and quantum mechanics. In quantum mechanics their importance lies in the Dirac–von Neumann formulation of quantum mechanics, in which physical observables such as position, momentum, angular momentum and spin are represented by self-adjoint operators on a Hilbert space. Of particular significance is the Hamiltonianwhich as an observable corresponds to the total energy of a particle of mass m in a real potential field V. Differential operators are an important class of unbounded operators.The structure of self-adjoint operators on infinite-dimensional Hilbert spaces essentially resembles thefinite-dimensional case, that is to say, operators are self-adjoint if and only if they are unitarily equivalent to real-valued multiplication operators. With suitable modifications, this result can be extended to possibly unbounded operators on infinite-dimensional spaces. Since an everywhere defined self-adjoint operator is necessarily bounded, one needs be more attentive to the domain issue in the unbounded case. This is explained below in more detail.

Mapa conceptual: Self-adjoint operator

Contingut exclusiu per a membres de

D/i/d/a/c/t/a/l/i/a
Iniciar sessió

Mira un ejemplo de lo que te pierdes

Categories:

Fecha publicación: 28.4.2015

Comentar

0

Vols comentar? Registra't o inicia sessió

Uneix-te a Didactalia

Navega entre 226344 recursos i 564662 persones

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Vols accedir a més continguts educatius?

Iniciar sessió Uneix-te a una classe
x

Afegir a Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Ajuda del joc
Juegos de anatomía
Selecciona nivel educativo