Lições da Didactalia

Trabajo y energía

Cancelar SALVE
  • Eu curto 1
  • Visitas 4589
  • Comentarios 0
  • Guardar en
  • Ações

tipo de documento Lições

Informação do currículo

Nível: 15-16 años Matéria: Física y Química
Cancelar SALVE

Contenido

La energía

El término energía (del griego ἐνέργεια enérgeia, ‘actividad’ ‘operación’; de ἐνεργóς energós, ‘fuerza de acción’ o ‘fuerza de trabajo’) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, surgir, transformar o poner en movimiento.

En física (específicamente en mecánica), energía se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada para poder extraerla, transformarla y darle un uso industrial o económico).

Para que se incluya, también a la termodinámica, podemos decir, que la energía es la capacidad de los cuerpos para realizar transformaciones (mediante trabajo o mediante calor) en ellos mismos o en otros cuerpos. Es decir, el concepto de energía se define como la capacidad de hacer funcionar las cosas. De todos modos, en la definición no abarca la noción de energía que tiene una onda electromagnética, por ejemplo.

La masa y la energía están estrechamente relacionadas. Debido a la equivalencia masa-energía, cualquier objeto que tenga masa cuando está inmóvil (llamada masa en reposo) también tiene una cantidad equivalente de energía cuya forma se llama energía en reposo, y cualquier energía adicional (de cualquier forma) adquirida por el objeto por encima de esa energía en reposo aumentará la masa total del objeto al igual que aumenta su energía total. Por ejemplo, después de calentar un objeto, su aumento de energía podría medirse como un pequeño aumento de la masa, con una balanza suficientemente sensible.

Los organismos vivos requieren energía para mantenerse vivos, como la energía que los humanos obtienen de los alimentos. La civilización humana requiere energía para funcionar, que obtiene de recursos energéticos como combustibles fósiles, combustible nuclear o energías renovables. Los procesos del clima y del ecosistema de la Tierra son impulsados por la energía radiante que la Tierra recibe del Sol y la energía geotérmica contenida en el interior de la Tierra.

La unidad de medida que utilizamos para cuantificar la energía es el julio o joule (J), en honor al físico inglés James Prescott Joule.

Thomas Young, la primera persona que utilizó el término energía

La palabra energía deriva del en griego antiguo, ἐνέργεια, romanizado: energeia, lit. 'actividad, operación',2​ que posiblemente aparece por primera vez en la obra de Aristóteles en el siglo IV a.C. A diferencia de la definición moderna, energeia era un concepto filosófico cualitativo, lo suficientemente amplio como para incluir ideas como la felicidad y el placer.  

A finales del siglo XVII, Gottfried Leibniz propuso la idea de la vis viva, o fuerza viva, que definió como el producto de la masa de un objeto por su velocidad al cuadrado; creía que la vis viva total se conservaba. Para explicar la ralentización debida a la fricción, Leibniz teorizó que la energía térmica consistía en el movimiento aleatorio de las partes constituyentes de la materia, aunque pasaría más de un siglo hasta que esto se aceptara de forma generalizada. El análogo moderno de esta propiedad, la energía cinética, difiere de la vis viva sólo por un factor de dos.

En 1807, Thomas Young fue posiblemente el primero en utilizar el término «energía» en lugar de vis viva, en su sentido moderno.  Gustave-Gaspard Coriolis describió en 1829 la energía cinética en su sentido moderno, y en 1853, William Rankine acuñó el término energía potencial. La ley de conservación de la energía también se postuló por primera vez a principios del siglo XIX, y se aplica a cualquier sistema aislado. Durante algunos años se discutió si el calor era una sustancia física, lo que se denominó calórica, o simplemente una cantidad física, como el momento. En 1845 James Prescott Joule descubrió la relación entre el trabajo mecánico y la generación de calor.

Estos avances condujeron a la teoría de la conservación de la energía, formalizada en gran medida por William Thomson (Lord Kelvin) como el campo de la termodinámica. La termodinámica ayudó al rápido desarrollo de las explicaciones de los procesos químicos por parte de Rudolf Clausius, Josiah Willard Gibbs y Walther Nernst. También condujo a la formulación matemática del concepto de entropía por Clausius y a la introducción de las leyes de la energía radiante por Jožef Stefan. Según el teorema de Noether, la conservación de la energía es una consecuencia del hecho de que las leyes de la física no cambian con el tiempo.

Así, desde 1918, los teóricos han entendido que la ley de conservación de la energía es la consecuencia matemática directa de la simetría traslacional de la cantidad conjugadas a la energía, es decir, el tiempo.

             

Créditos

Texto wikipedia:

Imagen:

  • De Según Thomas Lawrence - National Portrait Gallery: NPG 1899D7714, also on gutenberg.org, Dominio público, https://commons.wikimedia.org/w/index.php?curid=783356

Contenido

La energía

El término energía (del griego ἐνέργεια enérgeia, ‘actividad’ ‘operación’; de ἐνεργóς energós, ‘fuerza de acción’ o ‘fuerza de trabajo’) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, surgir, transformar o poner en movimiento.

En física (específicamente en mecánica), energía se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada para poder extraerla, transformarla y darle un uso industrial o económico).

Para que se incluya, también a la termodinámica, podemos decir, que la energía es la capacidad de los cuerpos para realizar transformaciones (mediante trabajo o mediante calor) en ellos mismos o en otros cuerpos. Es decir, el concepto de energía se define como la capacidad de hacer funcionar las cosas. De todos modos, en la definición no abarca la noción de energía que tiene una onda electromagnética, por ejemplo.

La masa y la energía están estrechamente relacionadas. Debido a la equivalencia masa-energía, cualquier objeto que tenga masa cuando está inmóvil (llamada masa en reposo) también tiene una cantidad equivalente de energía cuya forma se llama energía en reposo, y cualquier energía adicional (de cualquier forma) adquirida por el objeto por encima de esa energía en reposo aumentará la masa total del objeto al igual que aumenta su energía total. Por ejemplo, después de calentar un objeto, su aumento de energía podría medirse como un pequeño aumento de la masa, con una balanza suficientemente sensible.

Los organismos vivos requieren energía para mantenerse vivos, como la energía que los humanos obtienen de los alimentos. La civilización humana requiere energía para funcionar, que obtiene de recursos energéticos como combustibles fósiles, combustible nuclear o energías renovables. Los procesos del clima y del ecosistema de la Tierra son impulsados por la energía radiante que la Tierra recibe del Sol y la energía geotérmica contenida en el interior de la Tierra.

La unidad de medida que utilizamos para cuantificar la energía es el julio o joule (J), en honor al físico inglés James Prescott Joule.

Thomas Young, la primera persona que utilizó el término energía

La palabra energía deriva del en griego antiguo, ἐνέργεια, romanizado: energeia, lit. 'actividad, operación',2​ que posiblemente aparece por primera vez en la obra de Aristóteles en el siglo IV a.C. A diferencia de la definición moderna, energeia era un concepto filosófico cualitativo, lo suficientemente amplio como para incluir ideas como la felicidad y el placer.

A finales del siglo XVII, Gottfried Leibniz propuso la idea de la vis viva, o fuerza viva, que definió como el producto de la masa de un objeto por su velocidad al cuadrado; creía que la vis viva total se conservaba. Para explicar la ralentización debida a la fricción, Leibniz teorizó que la energía térmica consistía en el movimiento aleatorio de las partes constituyentes de la materia, aunque pasaría más de un siglo hasta que esto se aceptara de forma generalizada. El análogo moderno de esta propiedad, la energía cinética, difiere de la vis viva sólo por un factor de dos.

En 1807, Thomas Young fue posiblemente el primero en utilizar el término «energía» en lugar de vis viva, en su sentido moderno. Gustave-Gaspard Coriolis describió en 1829 la energía cinética en su sentido moderno, y en 1853, William Rankine acuñó el término energía potencial. La ley de conservación de la energía también se postuló por primera vez a principios del siglo XIX, y se aplica a cualquier sistema aislado. Durante algunos años se discutió si el calor era una sustancia física, lo que se denominó calórica, o simplemente una cantidad física, como el momento. En 1845 James Prescott Joule descubrió la relación entre el trabajo mecánico y la generación de calor.

Estos avances condujeron a la teoría de la conservación de la energía, formalizada en gran medida por William Thomson (Lord Kelvin) como el campo de la termodinámica. La termodinámica ayudó al rápido desarrollo de las explicaciones de los procesos químicos por parte de Rudolf Clausius, Josiah Willard Gibbs y Walther Nernst. También condujo a la formulación matemática del concepto de entropía por Clausius y a la introducción de las leyes de la energía radiante por Jožef Stefan. Según el teorema de Noether, la conservación de la energía es una consecuencia del hecho de que las leyes de la física no cambian con el tiempo.

Así, desde 1918, los teóricos han entendido que la ley de conservación de la energía es la consecuencia matemática directa de la simetría traslacional de la cantidad conjugadas a la energía, es decir, el tiempo.

Créditos

Texto wikipedia:

Imagen:

  • De Según Thomas Lawrence - National Portrait Gallery: NPG 1899D7714, also on gutenberg.org, Dominio público, https://commons.wikimedia.org/w/index.php?curid=783356

Unitats didàctiques

Trabajo y Energía (Física de 4º ESO)

Trabajo, potencia y energía (ite)

Energías Potencial y Cinética por Juan J. Sanmartín

Trabajo y energía. Por Francisco Ruiz Perales

Para praticar

Tipos de energía

ENERGÍA Y TRABAJO MECÁNICO (Modificado 9-IX-21)

La Energía se transforma

Transmisión de energía eléctrica

Para experimentar

¿Cómo funciona una montaña rusa?

Mapa conceitual: Trabajo y energía

Conteúdo exclusivo para membros de

D/i/d/a/c/t/a/l/i/a
Iniciar sessão

Mira un ejemplo de lo que te pierdes

Comente

0

Deseja fazer um comentário? Registrar o Iniciar sessão

Junte-se à Didactalia

Navegue entre 226261 recursos e 556963 pessoas

Regístrate >

O conéctate a través de:

Si ya eres usuario, Inicia sesión

Temas de: física y química - 4º eso

Movimiento de cuerpos: cinemática

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Fuerzas y movimiento. Leyes de Newton

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Fuerzas y presiones en fluidos

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Trabajo y energía

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Calor y energía

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Ondas: luz y sonido

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Astronomía y Gravitación Universal

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Estructura atómica y enlaces químicos

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Transformaciones químicas

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Carbono: química y compuestos

Nivel educativo: 14-16 años/3º-4º ESO

tipo de documento

Você quer acessar mais conteúdo educacional?

Iniciar sessao Participar de uma aula
x

Adicionar ao Didactalia Arrastra el botón a la barra de marcadores del navegador y comparte tus contenidos preferidos. Más info...

Ajuda do jogo
Juegos de anatomía
Selecciona nivel educativo